Skip to content

Implementation in TDMPC-2 #9

@youwyu

Description

@youwyu

Hello, a very smart work. Could you please share the implementation in TDMPC-2?

This is the original MLP.

class NormedLinear(nn.Linear):
	def __init__(self, *args, dropout=0., act=None, **kwargs):
		super().__init__(*args, **kwargs)
		self.ln = nn.LayerNorm(self.out_features)
		if act is None:
			act = nn.Mish(inplace=False)
		self.act = act
		self.dropout = nn.Dropout(dropout, inplace=False) if dropout else None

	def forward(self, x):
		x = super().forward(x)
		if self.dropout:
			x = self.dropout(x)
		return self.act(self.ln(x))

This is my implementation, but I'm not sure whether it's correct.

class NormedResidualLinear(nn.Linear):
	def __init__(self, *args, dropout=0., act=None, **kwargs):
		super().__init__(*args, **kwargs)
		self.ln = nn.LayerNorm(self.out_features)
		self.act = nn.ReLU(inplace=False)
		self.dropout = nn.Dropout(dropout, inplace=False) if dropout else None

	def forward(self, x):
		x = super().forward(x)
		res = x
		if self.dropout:
			x = self.dropout(x)
		return res + self.act(self.ln(x))

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions