-
Notifications
You must be signed in to change notification settings - Fork 32
Open
Description
I'm a bit confused why the powered_effect is not calculated in the StudentsTTest but it's provided in ZTest.
The above is the data frame which I passed into both
stat_res_df = confidence.ZTest(
stats_df,
numerator_column='conversions',
numerator_sum_squares_column=None,
denominator_column='total',
categorical_group_columns='variant_id',
correction_method='bonferroni')
and
stat_res_df = confidence.StudentsTTest(
stats_df,
numerator_column='conversions',
numerator_sum_squares_column=None,
denominator_column='total',
categorical_group_columns='variant_id',
correction_method='bonferroni')
but when I called stat_res_df.difference(level_1='control', level_2='treatment') I found the result from z-test provides the powered_effect column as below

but it's missing from the t-test result. Another question, why is the required_sample_size missing? Is there a way to also provide the sample size estimation in the result? Thanks!
Metadata
Metadata
Assignees
Labels
No labels
