Skip to content

Azure/contentflow

Repository files navigation

ContentFlow Logo ContentFlow

Intelligent, scalable content processing pipelines powered by Azure AI and orchestrated by Microsoft Agent Framework

Azure Python 3.12+ TypeScript FastAPI License: MIT


πŸ“‹ What is ContentFlow?

ContentFlow is an enterprise-grade document and content processing platform that transforms unstructured content into intelligent, actionable data. It combines:

  • πŸ”„ Orchestrated Workflows - YAML-based pipeline definitions with conditional routing and parallel execution
  • πŸ€– AI-Powered Processing - Integration with Azure AI services for document intelligence, embeddings, and analysis
  • πŸ“¦ Modular Executors - 40+ pre-built processors for PDF, Word, Excel, PowerPoint, and more
  • 🌐 Cloud-Native Architecture - Deployed on Azure Container Apps with distributed processing
  • πŸ’» Intuitive Web UI - React-based interface for pipeline design and monitoring
  • ⚑ Scalable & Distributed - Multi-worker architecture for processing at scale

✨ Key Features

🎯 Powerful Content Processing

  • Multi-Format Support: PDF, Word, Excel, PowerPoint, plain text, web content, audio, video
  • OCR & Layout Analysis: Extract text from scanned documents with layout preservation
  • Intelligent Extraction: Tables, images, metadata, document structure
  • Content Understanding: Chunking, embedding generation, semantic analysis
  • Knowledge Graphs: Extract and build relationships between entities

πŸ”— Advanced Workflow Capabilities

  • Conditional Routing: Dynamic paths based on document properties
  • Parallel Processing: Fan-out/fan-in patterns with result aggregation
  • Batch Operations: Efficient processing of large document collections
  • Sub-Pipelines: Hierarchical workflow composition for complex scenarios
  • Error Handling: Automatic retry logic and graceful degradation

🧠 AI Integration

  • Document Intelligence: Extract text, tables, key-value pairs from documents
  • Embeddings: Generate semantic vectors for similarity search and RAG
  • Content Analysis: Sentiment, entity extraction, topic classification
  • Web Scraping: Dynamic content extraction with Playwright

πŸ” Enterprise Ready

  • Azure AI Landing Zone Integration: Secure deployment within enterprise environments
  • RBAC & Identity: Managed identities and role-based access control
  • Audit & Monitoring: Comprehensive logging and Application Insights
  • Data Isolation: Blob storage and Cosmos DB for persistent data management

🎬 Quick Start

Prerequisites

  • Azure subscription with necessary services configured
  • Python 3.12+
  • Docker (for running locally)
  • Node.js 18+ (for web UI development)

Deploy to Azure

Supports two modes:

  • Basic mode for quick setup for development and testing
  • Azure AI Landing Zone integrated mode for an Enterprise level deployment

➑️ View deployment docs for more details

git clone https://github.com/Azure/contentflow
cd contentflow

# One-command deployment
azd up

# This will:
# 1. Provision Azure infrastructure (Container Apps, Storage, Cosmos DB, etc.)
# 2. Build and push container images
# 3. Deploy services
# 4. Configure post-deployment settings
# 5. Output service URLs

Local Development

# API service
cd contentflow-api
pip install -r requirements.txt
python main.py

# Worker service
cd contentflow-worker
pip install -r requirements.txt
python main.py

# Web UI
cd contentflow-web
npm install
npm run dev

πŸ“š Real-World Use Cases

πŸ“„ Document Intelligence & Archival

Scenario: Enterprise needs to digitize and catalog thousands of historical documents

Input Documents β†’ PDF Extraction β†’ OCR & Layout Analysis β†’ Metadata Extraction β†’ Full-Text Indexing β†’ Archive Storage

Benefits: Searchable digital archives, compliance automation, instant retrieval


🧠 RAG (Retrieval-Augmented Generation) Pipeline

Scenario: Build a knowledge base from company documents for AI-powered Q&A

Documents β†’ Chunking β†’ Embedding Generation β†’ Vector Search Indexing β†’ LLM Query Augmentation

ContentFlow Powers: Batch processing thousands of documents, generating embeddings, storing in vector DB


πŸ“Š Financial Document Analysis

Scenario: Extract financial data from quarterly reports, earnings calls, and regulatory filings

Financial Documents β†’ Extract Tables β†’ Parse Key Metrics β†’ Classify Document Type β†’ Store in Data Warehouse

Smart Features:

  • Conditional routing based on document type
  • Parallel processing of multiple sections
  • Automatic retry on extraction failure

πŸ›’ E-Commerce Content Catalog

Scenario: Process product descriptions, images, and specifications across multiple formats

Product Files (PDF, DOC, XLSX) β†’ Content Extraction β†’ Image Processing β†’ Standardization β†’ Catalog Upload

Powered By: Batch operations, format-specific extractors, validation logic


πŸ₯ Healthcare Records Processing

Scenario: Convert paper records and scanned documents into structured patient data

Scanned Records β†’ OCR β†’ Medical Entity Extraction β†’ HIPAA Compliance Validation β†’ EHR Integration

Enterprise Features: Audit logging, encryption, RBAC, data isolation


πŸ“° News & Content Aggregation

Scenario: Crawl websites and aggregate news articles with AI analysis

Web URLs β†’ Web Scraping β†’ Content Extraction β†’ Sentiment Analysis β†’ Topic Classification β†’ Distribution

Automation: Parallel scraping, conditional routing, scheduled execution


πŸ—οΈ High-Level Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                    ContentFlow Platform                      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚                      User Interfaces                         β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚   Web Dashboard (React)      β”‚   REST API (FastAPI)          β”‚
β”‚  β€’ Pipeline Designer         β”‚   β€’ Execute Pipelines         β”‚
β”‚  β€’ Execution Monitoring      β”‚   β€’ Get Results               β”‚
β”‚  β€’ Result Visualization      β”‚   β€’ Query History             β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                               ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚              ContentFlow API Service                         β”‚
β”‚  (containerapp-api)                                          β”‚
β”‚  βœ“ Pipeline Management & Execution                           β”‚
β”‚  βœ“ Credential & Vault Integration                            β”‚
β”‚  βœ“ Event Streaming & Monitoring                              β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
         ↑                              ↓
    Config/Tasks             Results & Events
         ↑                              ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚           ContentFlow Library (Core Engine)                  β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚                    Pipeline Factory                          β”‚
β”‚  β€’ Parses YAML configurations                                β”‚
β”‚  β€’ Validates executor dependencies                           β”‚
β”‚  β€’ Creates optimized execution graphs                        β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚              40+ Pre-Built Executors                         β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Input Executors          β”‚  Processing Executors            β”‚
β”‚  β€’ Azure Blob Discovery   β”‚  β€’ PDF Text Extraction           β”‚
β”‚  β€’ Local File Reader      β”‚  β€’ Document Intelligence         β”‚
β”‚  β€’ Web Scraper            β”‚  β€’ Image Processing              β”‚
β”‚  β€’ Database Query         β”‚  β€’ Embeddings Generation         β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚  Routing Executors        β”‚  Output Executors                β”‚
β”‚  β€’ Conditional Router     β”‚  β€’ Azure Blob Writer             β”‚
β”‚  β€’ Batch Splitter         β”‚  β€’ Cosmos DB Storage             β”‚
β”‚  β€’ Parallel Executor      β”‚  β€’ CSV/JSON Export               β”‚
β”‚  β€’ Merge Aggregator       β”‚  β€’ Search Index Upload           β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                        ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚        ContentFlow Worker Service                            β”‚
β”‚  (containerapp-worker)                                       β”‚
β”‚  βœ“ Processes queued work items                               β”‚
β”‚  βœ“ Manages worker pool & scaling                             β”‚
β”‚  βœ“ Executes pipeline instances                               β”‚
β”‚  βœ“ Handles failures & retries                                β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                        ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚            Azure Services Integration                        β”‚
β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
β”‚ Storage & Data        β”‚ AI Services     β”‚ Infrastructure     β”‚
β”‚ β€’ Azure Blob Storage  β”‚ β€’ Document      β”‚ β€’ Container Apps   β”‚
β”‚ β€’ Cosmos DB           β”‚   Intelligence  β”‚ β€’ App Config       β”‚
β”‚ β€’ Queue Storage       β”‚ β€’ AI Services   β”‚ β€’ Key Vault        β”‚
β”‚ β€’ Search Index        β”‚ β€’ OpenAI/Models β”‚ β€’ Log Analytics    β”‚
β”‚                       β”‚ β€’ Embeddings    β”‚ β€’ App Insights     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Component Details

Web Dashboard (contentflow-web)

  • Modern React application with Vite
  • Visual pipeline designer with React Flow
  • Real-time execution monitoring
  • Results viewer with syntax highlighting
  • Responsive Tailwind CSS design

API Service (contentflow-api)

  • FastAPI REST endpoints for pipeline operations
  • AsyncIO-based for high concurrency
  • WebSocket support for real-time events
  • Integration with Azure Key Vault for secrets
  • CORS configured for web UI

Worker Service (contentflow-worker)

  • Multi-threaded content processing engine
  • Queue-based job distribution
  • Automatic scaling based on load
  • Health monitoring and graceful shutdown
  • Error handling with exponential backoff

Core Library (contentflow-lib)

  • Pipeline Factory: Compiles YAML to execution graphs
  • Executor Framework: Base classes and 40+ implementations
  • Content Models: Strongly-typed data structures
  • Event System: Real-time pipeline execution tracking
  • Plugin Architecture: Easy extension with custom executors

πŸ”§ Configuration & Customization

Define a Pipeline (YAML)

pipeline:
  name: document_processing
  description: "Process documents with intelligence"
  
  executors:
    - id: get_content
      type: azure_blob_input_discovery
      settings:
        blob_storage_account: "${STORAGE_ACCOUNT}"
        blob_container_name: "documents"
        file_extensions: ".pdf,.docx"
    
    - id: extract_text
      type: azure_document_intelligence_extractor
      settings:
        doc_intelligence_endpoint: "${DOC_INT_ENDPOINT}"
    
    - id: generate_embeddings
      type: embeddings_executor
      settings:
        model: "text-embedding-3-large"
    
    - id: store_results
      type: cosmos_db_writer
      settings:
        database_name: "contentflow"
        container_name: "documents"
  
  # Execution sequence with conditional routing
  edges:
    - from: get_content
      to: extract_text
    
    - from: extract_text
      to: generate_embeddings
      condition: "output.pages > 0"
    
    - from: generate_embeddings
      to: store_results

Run Programmatically (Python)

from contentflow.pipeline import PipelineExecutor
from contentflow.models import Content, ContentIdentifier

async with PipelineExecutor.from_config_file(
    config_path="my_pipeline.yaml",
    pipeline_name="document_processing"
) as executor:
    
    # Create content to process
    document = Content(
        id=ContentIdentifier(
            canonical_id="doc_001",
            unique_id="doc_001",
            source_name="azure_blob",
            source_type="pdf",
            path="documents/report.pdf"
        )
    )
    
    # Execute pipeline
    result = await executor.execute(document)
    
    # Check results
    print(f"Status: {result.status}")
    print(f"Duration: {result.duration_seconds}s")
    for event in result.events:
        print(f"  {event.executor_id}: {event.message}")

πŸ“¦ Project Structure

contentflow/
β”œβ”€β”€ contentflow-api/              # FastAPI REST service
β”‚   β”œβ”€β”€ app/
β”‚   β”‚   β”œβ”€β”€ routers/             # API endpoint definitions
β”‚   β”‚   β”œβ”€β”€ services/            # Business logic
β”‚   β”‚   β”œβ”€β”€ dependencies.py      # Dependency injection
β”‚   β”‚   └── settings.py          # Configuration
β”‚   β”œβ”€β”€ main.py                  # Application entry
β”‚   └── Dockerfile
β”‚
β”œβ”€β”€ contentflow-lib/              # Core processing library
β”‚   β”œβ”€β”€ contentflow/
β”‚   β”‚   β”œβ”€β”€ pipeline/            # Pipeline execution engine
β”‚   β”‚   β”œβ”€β”€ executors/           # 40+ executor implementations
β”‚   β”‚   β”œβ”€β”€ connectors/          # Data source connectors
β”‚   β”‚   β”œβ”€β”€ models/              # Data models
β”‚   β”‚   └── utils/               # Utilities
β”‚   β”œβ”€β”€ samples/                 # 20+ example pipelines
β”‚   β”œβ”€β”€ executor_catalog.yaml    # Executor registry
β”‚   └── pyproject.toml
β”‚
β”œβ”€β”€ contentflow-web/              # React web dashboard
β”‚   β”œβ”€β”€ src/
β”‚   β”‚   β”œβ”€β”€ components/          # Reusable UI components
β”‚   β”‚   β”œβ”€β”€ pages/               # Page components
β”‚   β”‚   β”œβ”€β”€ hooks/               # Custom React hooks
β”‚   β”‚   └── lib/                 # Utilities & helpers
β”‚   β”œβ”€β”€ vite.config.ts           # Build configuration
β”‚   └── Dockerfile
β”‚
β”œβ”€β”€ contentflow-worker/           # Processing worker service
β”‚   β”œβ”€β”€ app/
β”‚   β”‚   β”œβ”€β”€ engine.py            # Worker engine
β”‚   β”‚   β”œβ”€β”€ api.py               # Health/status endpoints
β”‚   β”‚   └── settings.py          # Configuration
β”‚   β”œβ”€β”€ main.py                  # Entry point
β”‚   └── Dockerfile
β”‚
└── infra/                        # Infrastructure as Code
    β”œβ”€β”€ bicep/
    β”‚   β”œβ”€β”€ main.bicep          # Main template
    β”‚   └── modules/            # Reusable Bicep modules
    └── scripts/                # Deployment automation

🎯 Executor Catalog

ContentFlow includes 40+ pre-built executors for common content processing tasks:

Input Executors

  • azure_blob_input_discovery - Discover files in Blob Storage
  • local_file_reader - Read files from local filesystem
  • web_scraper - Extract content from web pages
  • database_query - Retrieve content from databases

Extraction Executors

  • azure_document_intelligence_extractor - Extract text, tables, layout
  • pdf_text_extractor - PDF-specific text extraction
  • pdf_image_extractor - Extract images from PDFs
  • word_document_extractor - Process Word documents
  • excel_spreadsheet_extractor - Extract Excel data
  • powerpoint_extractor - Process PowerPoint presentations

Processing Executors

  • text_chunker - Split text into optimal chunks
  • embeddings_executor - Generate semantic embeddings
  • classifier_executor - Text classification
  • entity_extractor - Named entity recognition
  • sentiment_analyzer - Sentiment analysis
  • table_row_splitter - Extract table rows as documents
  • field_transformer - Transform and normalize fields

Routing Executors

  • conditional_router - Route based on conditions
  • batch_splitter - Split large batches
  • parallel_executor - Execute in parallel
  • merge_aggregator - Aggregate results from parallel paths

Output Executors

  • azure_blob_writer - Write to Blob Storage
  • cosmos_db_writer - Store in Cosmos DB
  • search_index_writer - Index for search

πŸ“Š Example Pipelines

ContentFlow comes with 20+ sample pipelines demonstrating various patterns:

Sample Demonstrates Files
01-simple Basic pipeline setup Config + simple execution
02-batch-processing Processing large collections Batch splitting & aggregation
03-pdf-extractor PDF content extraction Multi-stage PDF processing
04-word-extractor Word document processing Document intelligence
05-powerpoint-extractor PowerPoint analysis Slide extraction
06-ai-analysis AI-powered analysis LLM integration
07-embeddings Embedding generation Vector search prep
08-content-understanding Semantic analysis Chunking & classification
09-blob-input Blob storage integration Cloud file discovery
14-gpt-rag-ingestion RAG pipeline GPT + embeddings
15-document-analysis Advanced intelligence Comprehensive analysis
17-knowledge-graph Entity relationships Graph construction
18-web-scraping Web content extraction Dynamic scraping
32-parallel-processing Concurrent execution Multi-path workflows
44-conditional-routing Smart routing Condition-based paths

Run any sample:

cd contentflow-lib/samples/01-simple
python run.py

πŸ” Security & Compliance

βœ… Managed Identity Authentication - No exposed credentials
βœ… Azure Key Vault Integration - Secure secret storage
βœ… RBAC & Access Control - Fine-grained permissions
βœ… Encrypted Communication - TLS for all endpoints
βœ… Audit & Logging - Full audit trail with Application Insights
βœ… Data Isolation - Separate storage containers per tenant/environment
βœ… Compliance Ready - Supports HIPAA, SOC 2, GDPR patterns


πŸ“ˆ Performance & Scalability

Metric Capability
Throughput 100+ documents/hour per worker
Concurrency Unlimited parallel pipelines
Scaling Auto-scale Container Apps based on queue depth
Latency <1s for simple operations, <30s for complex AI
Reliability Automatic retry, fault tolerance, graceful degradation
Storage Unlimited with Blob Storage + Cosmos DB

πŸ“– Documentation & Resources


🀝 Contributing

We welcome contributions! Please:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit changes (git commit -m 'Add amazing feature')
  4. Push to branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

πŸ“ License

This project is licensed under the MIT License - see the LICENSE file for details.


πŸš€ Getting Help


πŸ’‘ Start Processing Content Intelligently Today

Deploy to Azure Β· View Samples Β· API Reference Β· Report Issue

Made with ❀️ using Microsoft Azure & Agent Framework

About

Transform Content Into Connected Knowledge

Resources

License

Code of conduct

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published