Step 0: Environment set up suitable conda environment (assumes conda installed) conda create -n torch python=3.10 -y
conda activate torch
conda install pytorch cpuonly -c pytorch -y
conda install numpy -y
conda install pandas -y
conda install scipy -y
pip install mat73
conda install numba -y
conda install scikit-learn -y
pip install matplotlib
pip install statsmodels
Install git-lfs. Necessary to properly clone files (mac shown here):
brew install git-lfs
git lfs install
git lfs pull
Clone github repository
Step 1: Encoding Sample code to open the template datum: import pandas as pd from utils import load_pickle datum = load_pickle('../template_datum.pkl') df = pd.DataFrame.from_dict(datum)
Replace embeddings in template_datum with your own.
Put embeddings in: /data/pickles/
In Makefile: Change PKL_IDENTIFIER to match your embeddings Change NUM_LAYERS, LAYERS as necessary Change OUT_NAME Change CMD based on your setup. May need your own “submit.sh” file for submitting multiple jobs at once
Then run: make run-layered-sig-encoding
Verification: Sometimes not all encodings run. To check, run: make verify-encoding
Outputs layers that are missing files and the numbers of files that are complete. Re-run those layers and verify again.
Getting Plots: Run: make plot-layered-sig-encoding
Output: Per roi: Inverted u plot Encoding plot Scaled encoding plot Lag layer plot