Skip to content

GreshamLab/sc_self_supervised

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

92 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

scself

PyPI version

Self Supervised Tools for Single Cell Data

Molecular Cross-Validation for PCs arXiv manuscript

mcv(
    count_data,
    n=1,
    n_pcs=100,
    random_seed=800,
    p=0.5,
    metric='mse',
    standardization_method='log',
    metric_kwargs={},
    silent=False,
    verbose=None,
    zero_center=False
)

Noise2Self for kNN selection arXiv manuscript

noise2self(
    count_data,
    neighbors=None,
    npcs=None,
    metric='euclidean',
    loss='mse',
    loss_kwargs={},
    return_errors=False,
    connectivity=False,
    standardization_method='log',
    pc_data=None,
    chunk_size=10000,
    verbose=None
)

Implemented as in DEWÄKSS

Feature module and submodule determination using pearson correlation distance, kNN embedding, and leiden clustering

get_correlation_modules(
    adata,
    layer='X',
    n_neighbors=10,
    leiden_kwargs={},
    output_key='gene_module',
    obs_mask=None

)

get_correlation_submodules(
    adata,
    layer='X',
    n_neighbors=10,
    leiden_kwargs={},
    input_key='gene_module',
    output_key='gene_submodule',
    obs_mask=None
)

Feature module and submodule scoring

score_all_modules(
    adata,
    modules=None,
    module_column='gene_module',
    output_key_suffix='_score',
    obs_mask=None,
    layer='X',
    scaler=TruncMinMaxScaler(),
    fit_scaler=True,
    clipping=None
)

score_all_submodules(
    adata,
    modules=None,
    submodules=None,
    module_column='gene_module',
    submodule_column='gene_submodule',
    output_key_suffix='_score',
    obs_mask=None,
    layer='X',
    scaler=TruncMinMaxScaler(),
    fit_scaler=True,
    clipping=None
)

About

Self Supervised Tools for Single Cell Data

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages