Skip to content

Harshad071/ADAS-Using-Deep-Learning

Repository files navigation

🚗 Real-Time Multi-Modal ADAS

An Integrated Framework for Lane Detection, Object Recognition, and Driver Drowsiness Monitoring Using OpenCV and YOLOv11

ADAS Demo


📖 Overview

This project presents a fully integrated Advanced Driver Assistance System (ADAS) that combines:

  • 🔍 Real-time object detection using YOLOv11
  • 🛣️ Classical lane detection using OpenCV
  • 😴 Driver drowsiness detection via facial cues (eyes closed, yawning)

Implemented using Flask, it supports real-time video streaming and inference through a web browser.


🧪 Research Publication

📄 Title: Real-Time Multi-Modal ADAS: An Integrated Framework for Lane Detection, Object Recognition, and Driver Drowsiness Monitoring
📍 Published at: NMIT Conference, 2025
📚 Authors: Harshad Jadhav, Priyanshu Wagh, Sahil Chalotra, Diptee Ghusse, Sunita Barve
🔗 [PDF Available Upon Request]


🚀 Key Features

  • 📦 Unified web-based system using Flask
  • 🔍 YOLOv11 object detection with real-time performance
  • 🛣️ Lane detection using Canny Edge and Hough Transform
  • 😴 Drowsiness detection using eye and yawn classifiers
  • 🎛️ User control over detection confidence
  • 🖥️ Live stream results: bounding boxes, FPS, resolution, object count

🧠 System Architecture

[Webcam / Video Input]
↓
[YOLOv11 Detection]  ← COCO, Roboflow Dataset
↓
[Lane Detection (OpenCV)] + [Drowsiness Detection (YOLOv11)]
↓
[Frame Annotator + Flask Streamer]
↓
[Web Dashboard (Real-time Video + Stats)]

🧰 Technologies Used

Component Tech Stack
Object Detection YOLOv11, PyTorch
Lane Detection OpenCV (Canny, Hough Transform)
Drowsiness Detection YOLOv11 (Closed Eyes, Yawn)
Backend Flask, Flask-WTF, Jinja2
Frontend HTML5, CSS3, JavaScript
Video Streaming Flask + OpenCV
Dataset Tool Roboflow

📁 Directory Structure

project/
│
├── flaskaap.py              # Flask backend
├── lane.py                  # Lane detection module
├── motion.py                # Drowsiness detection
├── hubconfCustom.py         # YOLOv11 inference
├── templates/
│   ├── indexproject.html
│   ├── videoprojectnew.html
│   └── ui.html
├── static/
│   ├── images/
│   ├── uploads/
│   └── voice1.mp3           # Audio alert
└── README.md

🔧 Installation Instructions

1. Clone the Repo

git clone https://github.com/yourusername/adas-yolov11.git
cd adas-yolov11

2. Create and Activate Virtual Environment

python -m venv venv
source venv/bin/activate   # Windows: venv\Scripts\activate

3. Install Required Packages

pip install -r requirements.txt

4. Run the Application

python flaskaap.py

Now open your browser and go to:

http://localhost:5000

🎥 How It Works

📹 Object Detection (YOLOv11)

  • Detects cars, pedestrians, bikes, etc.
  • Precision: 0.91, Recall: 0.96
  • Latency: ~5–6ms per frame (RTX 3060)

🛣️ Lane Detection

  • Grayscale + GaussianBlur + Canny + HoughLinesP
  • Accuracy: ~85–95% in ideal lighting
  • Lightweight for CPU/GPU

😴 Drowsiness Detection

  • YOLOv11 trained on Roboflow data
  • Classes: Open Eyes, Closed Eyes, Yawn
  • Accuracy: 95%+, Alerts via audio overlay

📊 Real-time Dashboard

  • FPS, resolution, and object count via AJAX
  • Displays annotated video in browser

📸 Sample Output

  • Total Objects Detected
  • Frame Size
  • Frames Per Second (FPS)
  • Lane overlays and bounding boxes
  • Drowsiness warning audio (voice1.mp3)

📊 Performance Summary

Module Accuracy Latency Notes
Object Detection 99% P, 96% R 5–6 ms/frame YOLOv11 on COCO
Lane Detection ~85–95% 33 ms/frame Canny + Hough
Drowsiness Detection >95% 50 ms/frame Closed eyes & yawns

💡 Future Enhancements

  • 🌙 Night-mode & fog adaptation
  • 📱 Android App Interface
  • 🎮 Head pose and tilt detection
  • 🧠 Audio command support
  • 🔌 Jetson Nano edge deployment

📜 License

This project is licensed under the MIT License. See the LICENSE file for details.


🧑‍🔬 Authors & Contributions

  • Harshad Jadhav
  • Priyanshu Wagh
  • Sahil Chalotra
  • Diptee Ghusse
  • Sunita Barve

Special thanks to MIT Academy of Engineering, Pune for guidance and resources.


📬 Contact

📧 harshad.jadhav@mitaoe.ac.in
🔗 LinkedIn
🏫 MITAOE, Pune


🏁 Acknowledgements



---

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published