An Integrated Framework for Lane Detection, Object Recognition, and Driver Drowsiness Monitoring Using OpenCV and YOLOv11
This project presents a fully integrated Advanced Driver Assistance System (ADAS) that combines:
- 🔍 Real-time object detection using YOLOv11
- 🛣️ Classical lane detection using OpenCV
- 😴 Driver drowsiness detection via facial cues (eyes closed, yawning)
Implemented using Flask, it supports real-time video streaming and inference through a web browser.
📄 Title: Real-Time Multi-Modal ADAS: An Integrated Framework for Lane Detection, Object Recognition, and Driver Drowsiness Monitoring
📍 Published at: NMIT Conference, 2025
📚 Authors: Harshad Jadhav, Priyanshu Wagh, Sahil Chalotra, Diptee Ghusse, Sunita Barve
🔗 [PDF Available Upon Request]
- 📦 Unified web-based system using Flask
- 🔍 YOLOv11 object detection with real-time performance
- 🛣️ Lane detection using Canny Edge and Hough Transform
- 😴 Drowsiness detection using eye and yawn classifiers
- 🎛️ User control over detection confidence
- 🖥️ Live stream results: bounding boxes, FPS, resolution, object count
[Webcam / Video Input]
↓
[YOLOv11 Detection] ← COCO, Roboflow Dataset
↓
[Lane Detection (OpenCV)] + [Drowsiness Detection (YOLOv11)]
↓
[Frame Annotator + Flask Streamer]
↓
[Web Dashboard (Real-time Video + Stats)]
| Component | Tech Stack |
|---|---|
| Object Detection | YOLOv11, PyTorch |
| Lane Detection | OpenCV (Canny, Hough Transform) |
| Drowsiness Detection | YOLOv11 (Closed Eyes, Yawn) |
| Backend | Flask, Flask-WTF, Jinja2 |
| Frontend | HTML5, CSS3, JavaScript |
| Video Streaming | Flask + OpenCV |
| Dataset Tool | Roboflow |
project/
│
├── flaskaap.py # Flask backend
├── lane.py # Lane detection module
├── motion.py # Drowsiness detection
├── hubconfCustom.py # YOLOv11 inference
├── templates/
│ ├── indexproject.html
│ ├── videoprojectnew.html
│ └── ui.html
├── static/
│ ├── images/
│ ├── uploads/
│ └── voice1.mp3 # Audio alert
└── README.mdgit clone https://github.com/yourusername/adas-yolov11.git
cd adas-yolov11python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activatepip install -r requirements.txtpython flaskaap.pyNow open your browser and go to:
http://localhost:5000
- Detects cars, pedestrians, bikes, etc.
- Precision: 0.91, Recall: 0.96
- Latency: ~5–6ms per frame (RTX 3060)
- Grayscale + GaussianBlur + Canny + HoughLinesP
- Accuracy: ~85–95% in ideal lighting
- Lightweight for CPU/GPU
- YOLOv11 trained on Roboflow data
- Classes: Open Eyes, Closed Eyes, Yawn
- Accuracy: 95%+, Alerts via audio overlay
- FPS, resolution, and object count via AJAX
- Displays annotated video in browser
- Total Objects Detected
- Frame Size
- Frames Per Second (FPS)
- Lane overlays and bounding boxes
- Drowsiness warning audio (voice1.mp3)
| Module | Accuracy | Latency | Notes |
|---|---|---|---|
| Object Detection | 99% P, 96% R | 5–6 ms/frame | YOLOv11 on COCO |
| Lane Detection | ~85–95% | 33 ms/frame | Canny + Hough |
| Drowsiness Detection | >95% | 50 ms/frame | Closed eyes & yawns |
- 🌙 Night-mode & fog adaptation
- 📱 Android App Interface
- 🎮 Head pose and tilt detection
- 🧠 Audio command support
- 🔌 Jetson Nano edge deployment
This project is licensed under the MIT License. See the LICENSE file for details.
- Harshad Jadhav
- Priyanshu Wagh
- Sahil Chalotra
- Diptee Ghusse
- Sunita Barve
Special thanks to MIT Academy of Engineering, Pune for guidance and resources.
📧 harshad.jadhav@mitaoe.ac.in
🔗 LinkedIn
🏫 MITAOE, Pune
---
