This project aims to predict the likelihood of a customer converting a motor insurance quote into an actual policy, and uncover key insights to support marketing and pricing strategy optimization.
.
├── data/ # Input datasets (CSV and Parquet)
│ ├── conversion_data.csv
│ ├── conversion_data.parquet
│ ├── vehicle_classifier.csv
│ └── vehicle_classifier.parquet
├── functions/ # Local modules
│ ├── machine_learning_models.py
│ ├── plot_utils.py
│ └── utils.py
├── models/
│ ├── final_best_model.pkl
│ └── results_df.csv # Models comparison results
├── Motor Insurance Conversion Modelling.ipynb
└── requirements.txt # Project dependencies
-
Go to project folder:
cd motor-insurance-conversion -
Create and activate a virtual environment (optional but recommended):
python -m venv .venv .venv\Scripts\activate # On Windows
-
Install required packages:
pip install -r requirements.txt
-
Launch Jupyter Notebook:
jupyter notebook
-
Open and run:
Motor Insurance Conversion Modelling.ipynbThis notebook includes:
- Data loading and merging
- Exploratory Data Analysis
- Feature engineering and correlation analysis
- Model training with hyperparameter tuning
- Evaluation and visualization of model performance
- Business insights and recommendations
- Jupyter Notebook with full pipeline
models/results_df.csv: Performance comparison of all trained modelsmodels/final_best_model.pkl: Model with best results- Short summary and insights in the final notebook