Skip to content

Riciokzz/Motor-Insurance-Conversion

Repository files navigation

Motor Insurance Conversion Modelling

This project aims to predict the likelihood of a customer converting a motor insurance quote into an actual policy, and uncover key insights to support marketing and pricing strategy optimization.


Project Structure

.
├── data/                   # Input datasets (CSV and Parquet)
│   ├── conversion_data.csv
│   ├── conversion_data.parquet
│   ├── vehicle_classifier.csv
│   └── vehicle_classifier.parquet
├── functions/             # Local modules
│   ├── machine_learning_models.py
│   ├── plot_utils.py
│   └── utils.py
├── models/
│   ├── final_best_model.pkl
│   └── results_df.csv     # Models comparison results
├── Motor Insurance Conversion Modelling.ipynb
└── requirements.txt       # Project dependencies

⚙Installation

  1. Go to project folder:

    cd motor-insurance-conversion
  2. Create and activate a virtual environment (optional but recommended):

    python -m venv .venv
    .venv\Scripts\activate    # On Windows
  3. Install required packages:

    pip install -r requirements.txt

Running the Project

  1. Launch Jupyter Notebook:

    jupyter notebook
  2. Open and run: Motor Insurance Conversion Modelling.ipynb

    This notebook includes:

    • Data loading and merging
    • Exploratory Data Analysis
    • Feature engineering and correlation analysis
    • Model training with hyperparameter tuning
    • Evaluation and visualization of model performance
    • Business insights and recommendations

Deliverables

  • Jupyter Notebook with full pipeline
  • models/results_df.csv: Performance comparison of all trained models
  • models/final_best_model.pkl: Model with best results
  • Short summary and insights in the final notebook