Skip to content

ShepherdCode/BuildingEnergy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Time Series Analysis of Building Energy Data

by Aida da Silva and Jason Rafe Miller. This was a student collaboration for WVU CS 677 with Professor Dehzangi.

Getting started

  • Create a directory called BuildingEnergy.
  • Populate BuildingEnergy with all the Python notebook files (*.ipynb).
  • Create a subdirectory called data and move to that directory.
  • Download archive.zip from Kaggle into the data subdirectory.
  • Rename archive.zip to BuildingData.zip (but do not unzip it).
  • Move up to the BuildingEnergy directory.
  • Start Jupyter notebook.
  • Run the weather notebook as your first test.

Notebooks from Presentation 1

  • Note each notebook (ipynb) has a corresponding Python script generated by nbconvert and saved in the scripts subdirctory. All notebooks used our BuildingSet1 data subset: 16 buildings with fairly complete steam usage data from site Eagle.
  • Report1.Weather.ipynb finds that air temp is highly correlated to energy usage.
  • Report1.Identity_101.ipynb uses a naive model.
  • Report1.LinReg_101.ipynb uses linear regression.
  • Report1.RNN_107.ipynb (formerly named LSTM_107) uses a SimpleRNN neural net.
  • Report1.LSTM_108.ipynb uses an LSTM neural net.
  • Report1.CNN_107.ipynb uses a CNN neural net.

Notebooks from Presentation 2

  • ConvLSTM.ipynb

Data sources

LSTnet

  • Paper on ACM or arXiv or arXiv
  • LSTNet authors posted their Python 2 and PyTorch code
  • A 3rd party Python 3 and Keras implementation here and another that claims to be faster.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •