Clean, Watermark-Free Descriptions from User Input
LuminaWeaver is a Python package that processes user-submitted text descriptions of images or videos containing watermarks and returns structured, watermark-free descriptions. It uses a language model to reinterpret the content while removing any watermark references, ensuring the output is clean and ready for further applications like content creation or archival.
Install the package via pip:
pip install luminaweaverfrom luminaweaver import luminaweaver
user_input = "This image shows a sunset over the mountains with a watermark in the bottom right corner."
response = luminaweaver(user_input)
print(response)You can replace the default LLM (ChatLLM7) with any LangChain-compatible model. Below are examples using popular LLMs:
from langchain_openai import ChatOpenAI
from luminaweaver import luminaweaver
llm = ChatOpenAI()
response = luminaweaver(user_input, llm=llm)from langchain_anthropic import ChatAnthropic
from luminaweaver import luminaweaver
llm = ChatAnthropic()
response = luminaweaver(user_input, llm=llm)from langchain_google_genai import ChatGoogleGenerativeAI
from luminaweaver import luminaweaver
llm = ChatGoogleGenerativeAI()
response = luminaweaver(user_input, llm=llm)| Parameter | Type | Description |
|---|---|---|
user_input |
str |
The text description containing watermarks to process. |
api_key |
Optional[str] |
Your LLM7 API key (if not using default). |
llm |
Optional[BaseChatModel] |
Custom LangChain LLM instance (optional). |
- Default LLM: Uses
ChatLLM7fromlangchain_llm7(PyPI). - Free Tier: Sufficient for most use cases.
- Custom API Key: Pass via
api_keyparameter or environment variableLLM7_API_KEY. - Get a Free Key: Register at LLM7 Token.
- Takes a user-provided text description (e.g., "Image of a cat with a watermark").
- Uses an LLM to reinterpret the description while removing watermark references.
- Returns a clean, structured output (e.g., "Image of a cat").
langchain-corelangchain-llm7(default)re(built-in)
- GitHub Issues: Report here
- Author: Eugene Evstafev (@chigwell)
- Email: hi@euegne.plus
MIT License (see LICENSE).