Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
60 changes: 60 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,66 @@ All notable changes to GIFT Core will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).

## [3.3.11] - 2026-01-24

### Summary

**Monster Dimension via Coxeter Numbers!** The Monster group's smallest faithful representation dimension (196883) is now expressed purely in terms of Coxeter numbers and the third Betti number b₃.

### Added

- **Core.lean** - Coxeter numbers for exceptional Lie algebras:
- `h_G2 : ℕ := 6` — Coxeter number of G₂
- `h_E6 : ℕ := 12` — Coxeter number of E₆
- `h_E7 : ℕ := 18` — Coxeter number of E₇
- `h_E8 : ℕ := 30` — Coxeter number of E₈
- Certified theorems: `h_G2_certified`, `h_E6_certified`, etc.

- **Moonshine/MonsterCoxeter.lean** - Main theorem and structural relations:
- `monster_dim_coxeter_formula`: dim(M₁) = (b₃ - h(G₂)) × (b₃ - h(E₇)) × (b₃ - h(E₈)) = 196883
- `factor_71_from_coxeter`: 71 = b₃ - h(G₂) = 77 - 6
- `factor_59_from_coxeter`: 59 = b₃ - h(E₇) = 77 - 18
- `factor_47_from_coxeter`: 47 = b₃ - h(E₈) = 77 - 30
- `monster_factors_prime`: All three factors are prime
- `coxeter_additivity`: h(G₂) + h(E₆) = h(E₇) (6 + 12 = 18)
- `coxeter_ratio_E8_G2`: h(E₈) / h(G₂) = Weyl_factor (30 / 6 = 5)
- `coxeter_sum_jordan`: h(G₂) + h(E₇) + h(E₈) = 2 × dim(J₃(𝕆)) (54 = 2 × 27)
- Root count verifications: `E8_roots_coxeter`, `E7_roots_coxeter`, `G2_roots_coxeter`
- `monster_coxeter_certificate`: Complete certificate (12 relations)

- **Moonshine/JInvariant.lean** - j-coefficient ratio observations:
- `j_coeff_3 : Nat := 864299970` — Third j-invariant coefficient
- `gift_109`: 109 = b₃ + dim(G₂) + h(E₇) = 77 + 14 + 18
- `j_coeff_2_quotient`: floor(c₂/c₁) = 109 (GIFT-expressible)
- `j_coeff_2_remainder`: c₂ - 109 × c₁ = 33404 (no GIFT expression)
- `gift_40`: 40 = b₂ + h(E₇) + b₀ = 21 + 18 + 1
- `j_coeff_3_quotient`: floor(c₃/c₂) = 40 (GIFT-expressible)

- **Moonshine.lean** - Module integration:
- `import GIFT.Moonshine.MonsterCoxeter`
- `monster_coxeter_certified` abbrev
- Updated `moonshine_complete_certificate` with Coxeter formula

### Mathematical Significance

The Monster-Coxeter formula is:
- **Exact**: No remainder or adjustment parameter
- **Intrinsic**: Uses only fundamental invariants (Betti number, Coxeter numbers)
- **Predictive**: Given h(G₂), h(E₇), h(E₈), and b₃, the Monster dimension follows

This connects Monstrous Moonshine to exceptional Lie theory via G₂-holonomy geometry:
- b₃ = 77 is the third Betti number of the G₂-holonomy manifold K₇
- The three prime factors 71, 59, 47 are exactly b₃ minus Coxeter numbers

### Relation Count

| Module | New Relations |
|--------|---------------|
| MonsterCoxeter | 12 |
| JInvariant (extended) | 6 |
| **Total v3.3.11** | **18** |
| **Cumulative** | **~265** |

## [3.3.10] - 2026-01-24

### Summary
Expand Down
31 changes: 29 additions & 2 deletions CLAUDE.md
Original file line number Diff line number Diff line change
Expand Up @@ -1579,7 +1579,34 @@ def matchCount : ℕ := countMatches ...

**Reserved identifiers**: `matches`, `where`, `do`, `let`, `have`, `fun`, `if`, `then`, `else`, `match`, `with`

### Axiom Status (v3.3.10)
### 46. Import Order in Lean 4

**Problem**: In Lean 4, imports must come BEFORE module docstrings.

```lean
-- BAD - "invalid 'import' command, it must be used in the beginning of the file"
/-!
# My Module
This is a docstring.
-/

import GIFT.Core -- ERROR!

-- GOOD - imports first, then docstring
import GIFT.Core
import Mathlib.Data.Nat.Prime.Basic

/-!
# My Module
This is a docstring.
-/
```

**Rule**: Always place `import` statements at the very top of the file, before any `/-! ... -/` docstrings.

---

### Axiom Status (v3.3.11)

**Numerical Bounds - COMPLETE! (0 remaining):**
- ✓ All Taylor series bounds proven
Expand All @@ -1599,4 +1626,4 @@ def matchCount : ℕ := countMatches ...

---

*Last updated: 2026-01-24 - V3.3.10: GIFT-Zeta Correspondences & Monster-Zeta Moonshine*
*Last updated: 2026-01-24 - V3.3.11: Monster Dimension via Coxeter Numbers*
27 changes: 27 additions & 0 deletions Lean/GIFT/Core.lean
Original file line number Diff line number Diff line change
Expand Up @@ -96,6 +96,33 @@ def dim_F4 : ℕ := 52

-- Note: dim_G2 and rank_G2 come from Algebraic.G2

-- =============================================================================
-- COXETER NUMBERS
-- =============================================================================

/-- Coxeter number of G₂.
The Coxeter number h is the order of a Coxeter element in the Weyl group.
For G₂: h = 6, and |G₂ roots| = h × rank = 6 × 2 = 12. -/
def h_G2 : ℕ := 6

/-- Coxeter number of E₆.
h(E₆) = 12, and |E₆ roots| = 12 × 6 = 72. -/
def h_E6 : ℕ := 12

/-- Coxeter number of E₇.
h(E₇) = 18, and |E₇ roots| = 18 × 7 = 126. -/
def h_E7 : ℕ := 18

/-- Coxeter number of E₈.
h(E₈) = 30, and |E₈ roots| = 30 × 8 = 240. -/
def h_E8 : ℕ := 30

-- Certifications for use in norm_num
theorem h_G2_certified : h_G2 = 6 := rfl
theorem h_E6_certified : h_E6 = 12 := rfl
theorem h_E7_certified : h_E7 = 18 := rfl
theorem h_E8_certified : h_E8 = 30 := rfl

-- =============================================================================
-- GEOMETRY: K7 MANIFOLD
-- =============================================================================
Expand Down
17 changes: 12 additions & 5 deletions Lean/GIFT/Moonshine.lean
Original file line number Diff line number Diff line change
@@ -1,22 +1,24 @@
-- GIFT Monstrous Moonshine Module
-- v3.3.10: Monster group, j-invariant, supersingular primes, and Monster-Zeta Moonshine
-- v3.3.11: Monster-Coxeter formula added
--
-- This module provides:
-- - Monster dimension factorization (196883 = 47 × 59 × 71)
-- - Monster dimension via Coxeter numbers: (b₃-h(G₂))(b₃-h(E₇))(b₃-h(E₈))
-- - j-invariant constant term (744 = 3 × 248)
-- - All 15 supersingular primes GIFT-expressible
-- - Monster-Zeta Moonshine hypothesis
--
-- Total: 50+ new relations (Relations 174-223)
-- Total: 60+ new relations (Relations 174-233)

import GIFT.Moonshine.MonsterDimension
import GIFT.Moonshine.MonsterCoxeter
import GIFT.Moonshine.JInvariant
import GIFT.Moonshine.Supersingular
import GIFT.Moonshine.MonsterZeta

namespace GIFT.Moonshine

open MonsterDimension JInvariant Supersingular MonsterZeta
open MonsterDimension MonsterCoxeter JInvariant Supersingular MonsterZeta
open GIFT.Core

/-- Master theorem: All moonshine relations certified -/
Expand All @@ -34,18 +36,23 @@ abbrev supersingular_certified := Supersingular.supersingular_certificate
/-- Access Monster-Zeta Moonshine (v3.3.10) -/
abbrev monster_zeta_certified := MonsterZeta.monster_zeta_certificate

/-- Complete Moonshine certificate (v3.3.10) -/
/-- Access Monster-Coxeter formula (v3.3.11) -/
abbrev monster_coxeter_certified := MonsterCoxeter.monster_coxeter_certificate

/-- Complete Moonshine certificate (v3.3.11) -/
theorem moonshine_complete_certificate :
-- Monster dimension
(MonsterDimension.monster_dim = 196883) ∧
(MonsterDimension.monster_dim = 47 * 59 * 71) ∧
-- Monster-Coxeter formula
((b3 - h_G2) * (b3 - h_E7) * (b3 - h_E8) = 196883) ∧
-- j-invariant
(j_constant = 744) ∧
(j_constant = N_gen * dim_E8) ∧
-- Supersingular count
(supersingular_primes.length = 15) ∧
-- Monster-Zeta holds
monster_zeta_moonshine := by
refine ⟨rfl, ?_, rfl, ?_, rfl, monster_zeta_holds⟩ <;> native_decide
refine ⟨rfl, ?_, ?_, rfl, ?_, rfl, monster_zeta_holds⟩ <;> native_decide

end GIFT.Moonshine
40 changes: 36 additions & 4 deletions Lean/GIFT/Moonshine/JInvariant.lean
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
-- GIFT Monster Group - j-Invariant Relations
-- v2.0.0: j-invariant and modular function connections
-- v2.1.0: j-invariant, modular function connections, coefficient observations
--
-- The j-invariant j(tau) = q^-1 + 744 + 196884*q + ...
-- The j-invariant j(tau) = q^-1 + 744 + 196884*q + 21493760*q^2 + ...
-- has constant term 744 = 3 x 248 = N_gen x dim_E8
--
-- This connects Monster group to E8 via Monstrous Moonshine.
Expand Down Expand Up @@ -49,13 +49,45 @@ def j_coeff_1 : Nat := 196884

theorem j_coeff_1_monster : j_coeff_1 = monster_dim + 1 := by native_decide

/-- Second coefficient: 21493760 = 196884 + 21296876
This relates to Monster representations -/
/-- Second coefficient of j(tau) expansion -/
def j_coeff_2 : Nat := 21493760

/-- Third coefficient of j(tau) expansion -/
def j_coeff_3 : Nat := 864299970

/-- The first coefficient is nearly Monster dimension -/
theorem j_coeff_moonshine : j_coeff_1 - 1 = monster_dim := by native_decide

-- =============================================================================
-- COEFFICIENT RATIO OBSERVATIONS
-- =============================================================================
-- NOTE: These are OBSERVATIONAL patterns, not exact formulas.
-- The ratios c₂/c₁ and c₃/c₂ have GIFT-expressible integer parts,
-- but the remainders have no clear interpretation.

/-- 109 = b₃ + dim(G₂) + h(E₇) = 77 + 14 + 18.
This appears as floor(c₂/c₁) = 109. -/
def gift_109 : Nat := b3 + dim_G2 + h_E7

theorem gift_109_value : gift_109 = 109 := by native_decide

/-- OBSERVATION: c₂ = 109 × c₁ + remainder.
The quotient 109 is GIFT-expressible; the remainder is not. -/
theorem j_coeff_2_quotient : j_coeff_2 / j_coeff_1 = gift_109 := by native_decide

/-- The remainder in c₂ = 109 × c₁ + r has no known GIFT expression.
109 × 196884 = 21460356, so 21493760 - 21460356 = 33404. -/
theorem j_coeff_2_remainder : j_coeff_2 - gift_109 * j_coeff_1 = 33404 := by native_decide

/-- 40 = b₂ + h(E₇) + 1 = 21 + 18 + 1.
This appears near floor(c₃/c₂) = 40.21... -/
def gift_40 : Nat := b2 + h_E7 + b0

theorem gift_40_value : gift_40 = 40 := by native_decide

/-- OBSERVATION: floor(c₃/c₂) = 40, which is GIFT-expressible. -/
theorem j_coeff_3_quotient : j_coeff_3 / j_coeff_2 = gift_40 := by native_decide

-- =============================================================================
-- E8 AND j-INVARIANT STRUCTURE
-- =============================================================================
Expand Down
Loading