Deploy Ray clusters on HPC resources with ACTIVATE.
- Select your compute resource
- Choose Ray Version (default: 2.40.0)
- Enable Submit to Job Scheduler for multi-node clusters (SLURM/PBS)
- Click Run
The workflow installs Ray, starts the cluster, and opens a session to the Ray Dashboard.
| Mode | Use Case |
|---|---|
| SSH Direct | Single-node cluster on login node (scheduler disabled) |
| SLURM | Multi-node cluster across SLURM-allocated nodes |
| PBS | Multi-node cluster across PBS-allocated nodes |
After the workflow completes, access the Ray Dashboard via the session link:
Ray Dashboard Session is ready!
Proxy URL: https://platform.parallel.works/me/session/...
From the Ray head node (same machine running Ray):
source ~/pw/activate-ray/ray_venv/bin/activate
cd ~/pw/activate-ray/examples
# Use absolute path for local files
ray job submit --address=http://localhost:8265 -- python $PWD/hello_ray.pyFrom the cluster controller (different machine than head node):
source ~/pw/activate-ray/ray_venv/bin/activate
# Use --working-dir to upload your code to Ray
ray job submit --address=http://localhost:8265 --working-dir . -- python hello_ray.pyFrom your PW user workspace (via tunnel on port 8888):
source ~/pw/activate-ray/ray_venv/bin/activate
# Submit job through the session tunnel (uploads code via --working-dir)
ray job submit --address=http://localhost:8888 --working-dir . -- python your_script.pyFrom your local machine (via SSH tunnel):
# Set up tunnel first
ssh -L 8888:localhost:8888 -o ProxyCommand="pw ssh --proxy-command %h" $USER@workspace
# Then submit jobs (uploads code via --working-dir)
ray job submit --address=http://localhost:8888 --working-dir . -- python your_script.pyimport ray
# From cluster head node
ray.init("ray://localhost:10001")
# Or from workspace/local machine via tunnel
ray.init("ray://localhost:8888")
@ray.remote
def compute(x):
return x * 2
results = ray.get([compute.remote(i) for i in range(10)])
print(results)Test the scripts locally without the full workflow.
git clone https://github.com/parallelworks/activate-ray.git
cd activate-ray
bash scripts/setup.sh # Installs Ray (uses uv to auto-install Python 3.12 if needed)
bash scripts/start.sh # Starts Ray clusterAccess dashboard at http://localhost:8265
- Configuration Reference - All input options and settings
- Development Guide - Local testing and development