Valyu search tools for AWS Bedrock AgentCore and Strands Agents.
Add web search, SEC filings, financial data, academic papers, patents, and biomedical research to your AWS Bedrock AgentCore and Strands agents.
Valyu is the leading search API for AI agents.
The agent runs locally (or on AWS Runtime) and uses Valyu tools to search across web, finance, SEC filings, academic papers, patents, and biomedical data. LLM inference is powered by Amazon Bedrock.
uv inituv add valyu-agentcoreFor AgentCore Gateway support:
uv add valyu-agentcore[agentcore]Have a look at our Strands agent implementation live at "AWS Let's Build a Startup" on YouTube.

Use Valyu tools directly with Strands Agents:
from valyu_agentcore import webSearch, financeSearch, secSearch
from strands import Agent
from strands.models import BedrockModel
agent = Agent(
model=BedrockModel(model_id="us.anthropic.claude-sonnet-4-20250514-v1:0"),
tools=[webSearch(), financeSearch(), secSearch()],
)
response = agent("Summarize Tesla's latest 10-K risk factors")Get your API key at platform.valyu.ai.

- Local Development: Developers can build and tests agent locally with direct API calls to Valyu
- Deploy Runtime: Agent can be deployed to AgentCore Runtime via
agentcore launch - Configure Gateway: Developers can set up Gateway with Valyu MCP target
- Authentication: Runtime requests access token from Cognito
- Token Response: Cognito returns JWT access token
- Tool Invocation: Runtime calls Gateway with Bearer token
- Request Forward: Gateway forwards request to Valyu MCP target
- API Query: MCP target makes search query to Valyu API
- Search Results: Valyu API returns search results
- MCP Response: MCP target formats response back to Gateway
- Final Results: Gateway returns tool results to Runtime agent
For production, deploy to AWS with centralized tool access:
User → AgentCore Runtime → AgentCore Gateway → Valyu MCP
# 1. Set up Gateway with Valyu tools
cd examples/gateway
export VALYU_API_KEY=your-key
python setup_gateway.py
# 2. Deploy agent to Runtime
cp valyu_gateway_config.json ../runtime/
cd ../runtime
agentcore configure --entrypoint agent.py --non-interactive --name myagent
agentcore launch
# 3. Test it
agentcore invoke '{"prompt": "What is NVIDIA stock price?"}'Why this architecture?
- Centralized secrets (API key in Gateway, not in code)
- CloudTrail audit logging
- OAuth authentication
- Serverless scaling
See examples/runtime/ for complete walkthrough.
Try the interactive Streamlit demo to explore all features:
# Set your API key
export VALYU_API_KEY=your-key
# Run the demo
streamlit run examples/app.pyFeatures:
- Local Mode - Direct API calls to Valyu
- Gateway Mode - Route through AWS AgentCore Gateway
- Runtime Mode - Serverless execution on AWS
Agents:
- Single-tool agents: Web, Finance, SEC, Academic, Patents, Biomedical, Economics
- Multi-tool agents: Financial Analyst, Research Assistant, Due Diligence
Views:
- Chat - Standard chat interface
- Compare - Side-by-side comparison: with Valyu search vs without
| Tool | Description | Best For |
|---|---|---|
webSearch |
Web search with full page content | News, current events, general info |
financeSearch |
Stock prices, earnings, market data | Financial analysis, market research |
paperSearch |
Academic papers (arXiv, PubMed, journals) | Literature review, research |
bioSearch |
Clinical trials, FDA labels, biomedical | Medical research, drug info |
patentSearch |
USPTO patents and IP | Prior art, IP research |
secSearch |
SEC filings (10-K, 10-Q, 8-K) | Company analysis, due diligence |
economicsSearch |
BLS, FRED, World Bank data | Economic indicators, policy research |
Real-world agent examples in examples/use_cases/:
| Example | Description | Tools Used |
|---|---|---|
| Financial Analyst | Investment research and analysis | SEC, finance, web |
| Research Assistant | Academic literature review | papers, patents, web |
| Due Diligence | M&A and investment evaluation | All tools |
# Run financial analyst
python examples/use_cases/financial_analyst.py "Analyze NVIDIA's competitive position"
# Run research assistant
python examples/use_cases/research_assistant.py "transformer architecture improvements"
# Run due diligence
python examples/use_cases/due_diligence.py "Stripe"See examples/local/ for individual tool examples.
from valyu_agentcore import webSearch
agent = Agent(
model=BedrockModel(model_id="us.anthropic.claude-sonnet-4-20250514-v1:0"),
tools=[webSearch()],
)
response = agent("Latest news on quantum computing breakthroughs")from valyu_agentcore import financeSearch
agent = Agent(
model=BedrockModel(model_id="us.anthropic.claude-sonnet-4-20250514-v1:0"),
tools=[financeSearch()],
)
response = agent("What is NVIDIA's current stock price and P/E ratio?")from valyu_agentcore import secSearch
agent = Agent(
model=BedrockModel(model_id="us.anthropic.claude-sonnet-4-20250514-v1:0"),
tools=[secSearch()],
)
response = agent("Summarize the risk factors from Apple's latest 10-K")from valyu_agentcore import ValyuTools
tools = ValyuTools(max_num_results=5)
agent = Agent(
model=BedrockModel(model_id="us.anthropic.claude-sonnet-4-20250514-v1:0"),
tools=tools.all(), # All 7 tools
)
# Or use tool groups:
# tools.search_tools() - All search tools
# tools.financial_tools() - finance, SEC, economics, company research
# tools.research_tools() - papers, bio, patentsAll tools accept these options:
from valyu_agentcore import webSearch
tool = webSearch(
api_key="your-key", # Or use VALYU_API_KEY env var
max_num_results=10, # Number of results (default: 5)
max_price=0.50, # Max cost per query in dollars
relevance_threshold=0.7, # Filter by quality (0-1)
excluded_sources=["reddit.com"], # Exclude specific domains
)If you already have an AgentCore Gateway:
from valyu_agentcore.gateway import add_valyu_target
# Add Valyu tools to your gateway
result = add_valyu_target(
gateway_id="your-gateway-id",
region="us-east-1", # optional
)
print(f"Added target: {result['target_id']}")Your existing agents will now have access to all Valyu tools through the gateway.
For testing or new deployments:
from valyu_agentcore.gateway import setup_valyu_gateway, GatewayAgent
# Create gateway with Cognito auth (one-time)
config = setup_valyu_gateway()
# Use the agent
with GatewayAgent.from_config() as agent:
response = agent("Search for NVIDIA SEC filings")
print(response)Deploy authentication infrastructure via CloudFormation:
aws cloudformation create-stack \
--stack-name valyu-gateway \
--template-body file://cloudformation/valyu-gateway.yaml \
--parameters ParameterKey=ValyuApiKey,ParameterValue=YOUR_KEY \
--capabilities CAPABILITY_NAMED_IAMThis creates Cognito, IAM, and logging infrastructure. Then create your gateway and add Valyu as a target. See cloudformation/ for full instructions.
Ready-to-use IAM policies in iam-policies/:
- agentcore-user-policy.json - Full gateway management access
- agentcore-invoke-only-policy.json - Minimal invoke-only access
You can also add Valyu via AWS Console:
- Go to Amazon Bedrock > AgentCore > Gateways
- Select your gateway > Add target
- Configure:
- Name:
valyu-search - Type: MCP server
- Endpoint:
https://mcp.valyu.ai/mcp?valyuApiKey=YOUR_KEY
- Name:
Tools available through the gateway:
| Gateway Tool | Description |
|---|---|
valyu_search |
Web search |
valyu_academic_search |
Academic papers |
valyu_financial_search |
Financial data |
valyu_sec_search |
SEC filings |
valyu_patents |
Patent search |
valyu_contents |
URL content extraction |
See examples/gateway/README.md for complete documentation.
valyu-agentcore/
├── valyu_agentcore/ # Core package
│ ├── tools.py # Strands Agent tools
│ └── gateway.py # AgentCore Gateway integration
├── examples/
│ ├── app.py # Streamlit demo UI
│ ├── local/ # Direct Strands usage
│ ├── runtime/ # AgentCore Runtime deployment
│ ├── gateway/ # AgentCore Gateway setup
│ └── use_cases/ # Real-world agent examples
├── assets/ # Images and diagrams
├── cloudformation/ # AWS CloudFormation templates
└── iam-policies/ # IAM policy templates
Build your own tool using the Valyu API:
import os
import httpx
from strands.tools import tool
@tool
def my_custom_search(query: str) -> dict:
"""Search for specific content."""
response = httpx.post(
"https://api.valyu.ai/v1/deepsearch",
headers={"x-api-key": os.environ["VALYU_API_KEY"]},
json={
"query": query,
"search_type": "all",
"included_sources": ["your-sources"],
},
)
return response.json()- Valyu Platform - Get API keys ($10 free credits)
- Valyu Documentation - API docs
- Strands Agents - Agent framework
- AWS Bedrock AgentCore - AWS docs
MIT


