-
This is the official implementation for Exploratory Diffusion Model for Unsupervised Reinforcement Learning.
-
The training code is based on URLB.
conda create -n exdm python=3.8
conda activate exdm
pip install -r requirements.txt
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 -f https://download.pytorch.org/whl/torch_stable.htmlcd URL
chmod +x pretrain_maze.sh
# you can choose task and domain from maze_square_a/maze_square_b/maze_square_c/maze_square_d/maze_square_tree/maze_square_bottleneck/maze_square_large
export MUJOCO_EGL_DEVICE_ID=0
python pretrain.py configs/agent=exdm_maze task=maze_square_a device=cuda:0 domain=maze_square_a num_train_frames=100010 seed=0 save_snapshot=true
# calculate the state coverage for each maze
python result_maze.pyIf you find this work helpful, please cite our paper.
@article{ying2025exploratory,
title={Exploratory Diffusion Model for Unsupervised Reinforcement Learning},
author={Ying, Chengyang and Chen, Huayu and Zhou, Xinning and Hao, Zhongkai and Su, Hang and Zhu, Jun},
journal={arXiv preprint arXiv:2502.07279},
year={2025}
}