Skip to content

Official implementation for "Exploratory Diffusion Model for Unsupervised Reinforcement Learning"

License

Notifications You must be signed in to change notification settings

yingchengyang/ExDM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ExDM

arXiv

Setup

conda create -n exdm python=3.8
conda activate exdm
pip install -r requirements.txt
pip install torch==1.8.0+cu111 torchvision==0.9.0+cu111 -f https://download.pytorch.org/whl/torch_stable.html

Pretrain in Maze

cd URL
chmod +x pretrain_maze.sh

# you can choose task and domain from maze_square_a/maze_square_b/maze_square_c/maze_square_d/maze_square_tree/maze_square_bottleneck/maze_square_large
export MUJOCO_EGL_DEVICE_ID=0
python pretrain.py configs/agent=exdm_maze task=maze_square_a device=cuda:0 domain=maze_square_a num_train_frames=100010 seed=0 save_snapshot=true

# calculate the state coverage for each maze
python result_maze.py

Citation

If you find this work helpful, please cite our paper.

@article{ying2025exploratory,
  title={Exploratory Diffusion Model for Unsupervised Reinforcement Learning},
  author={Ying, Chengyang and Chen, Huayu and Zhou, Xinning and Hao, Zhongkai and Su, Hang and Zhu, Jun},
  journal={arXiv preprint arXiv:2502.07279},
  year={2025}
}

About

Official implementation for "Exploratory Diffusion Model for Unsupervised Reinforcement Learning"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages